— Все документы — Технология строительства — МДС 12-48.2009 ЗИМНЕЕ БЕТОНИРОВАНИЕ С ПРИМЕНЕНИЕМ НАГРЕВАТЕЛЬНЫХ ПРОВОДОВ


МДС 12-48.2009 ЗИМНЕЕ БЕТОНИРОВАНИЕ С ПРИМЕНЕНИЕМ НАГРЕВАТЕЛЬНЫХ ПРОВОДОВ

МДС 12-48.2009 ЗИМНЕЕ БЕТОНИРОВАНИЕ С ПРИМЕНЕНИЕМ НАГРЕВАТЕЛЬНЫХ ПРОВОДОВ

Методическая документация в строительстве

ЗАО «ЦНИИОМТП»

ЗИМНЕЕ БЕТОНИРОВАНИЕ
С ПРИМЕНЕНИЕМ НАГРЕВАТЕЛЬНЫХ ПРОВОДОВ

МДС 12-48.2009

Москва 2009

В настоящем методическом документе содержатся сведения о зимнем бетонировании с применением нагревательных проводов: технические требования к нагревательным проводам и силовому электрооборудованию, методические положения по расчету и выбору параметров режима термообработки бетона, рекомендации по организации работ, правила и приемы выполнения технологических операций, нормы и процедуры оценки качества работ. Приводятся примеры бетонирования типовых конструктивных элементов здания: колонн, стен и перекрытий.

Сведения, содержащиеся в документе, могут быть использованы для составления технологических документов на зимнее бетонирование: проектов производства работ, технологических карт, технических регламентов и т.п.

Методический документ предназначен для проектных и строительных организаций и специалистов-строителей, занимающихся вопросами производства бетонных работ в зимних условиях.

Методический документ разработан сотрудниками ЗАО «ЦНИИОМТП» - кандидатами техн. наук В.П. Володиным и Ю.А. Корытовым.

Содержание

ВВЕДЕНИЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

2 НОРМАТИВНЫЕ И МЕТОДИЧЕСКИЕ ДОКУМЕНТЫ

3 ОБЩИЕ ПОЛОЖЕНИЯ

4 ПОДГОТОВКА К ЗИМНЕМУ БЕТОНИРОВАНИЮ

4.1 Зимняя бетонная смесь

4.2 Нагревательные провода и силовое оборудование

4.3 Теплоизоляционные материалы

4.4 Автобетононасос и бетоновод

5 ТЕХНОЛОГИЯ ТЕРМООБРАБОТКИ БЕТОНА

6 ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ТЕРМООБРАБОТКИ БЕТОНА В ТИПОВЫХ КОНСТРУКЦИЯХ ЗДАНИЙ

6.1 Колонна

6.2 Стена

6.3 Перекрытие

7 ОБЕСПЕЧЕНИЕ КАЧЕСТВА ЗИМНЕГО БЕТОНИРОВАНИЯ

8 ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ЭЛЕКТРОНАГРЕВЕ БЕТОНА

ВВЕДЕНИЕ

К зимнему бетонированию относятся работы, выполняемые при среднесуточной температуре наружного воздуха ниже 5°С и минимальной суточной температуре ниже 0°С. Считается, что зимнее бетонирование может производиться при температуре воздуха до минус 40°С. На практике зимнее бетонирование освоено до температуры минус 15-20°С.

Для набора бетоном необходимой прочности выполняют специальные мероприятия по подготовке и производству бетонных работ в зимнее время.

Для зимнего бетонирования применяют специальные бетоны с химическими противоморозными и пластифицирующими добавками.

При выполнении работ прогревают свежеуложенный бетон различными способами с применением водяного пара, нагретой воды или электроэнергии.

Свежеуложенный бетон предохраняют от потерь теплоты (метод термоса), укрывая различными утеплителями (матами, покрывалами, полотнищами).

Особые мероприятия, в частности по утеплению рабочих органов и бетоноводов, осуществляют при подготовке машин и технологического оборудования к зимнему бетонированию.

Основное требование при выполнении зимнего бетонирования заключается в создании благоприятных условий для приобретения бетоном в короткий срок необходимой проектной прочности.

Массивные монолитные конструкции (фундаментные плиты и блоки) с модулем поверхности охлаждения Мпот 2 до 4 бетонируют способом термоса с применением быстротвердеющих цементов, ускорителей твердения и противоморозных и пластифицирующих добавок.

Конструкции (колонны, блоки, стены) с модулем поверхности охлаждения 4-6 бетонируют способом термоса с применением предварительного подогрева бетонной смеси, нагревательных проводов и греющей опалубки.

Относительно тонкостенные конструкции (перегородки, перекрытия, стены) с модулем поверхности охлаждения 6-12 бетонируют упомянутыми выше способами с применением нагревательных проводов, термоактивных гибких покрытий (ТАГП), греющих плоских элементов (ГЭП).

В данном документе рассматривается способ зимнего бетонирования с применением нагревательных проводов. Этот способ имеет ряд преимуществ по сравнению с нагревом водяным паром, горячей водой, инфракрасным облучением. Эффективность способа повышается в сочетании с другими упомянутыми выше мероприятиями и приемами зимнего бетонирования: использованием высококлассного бетона с химическими добавками, утеплителей, подготовкой машин и технологического оборудования.

Применение нагревательных проводов позволяет возводить здания и сооружения, не отличающиеся по своей прочности от возводимых в летний период.

Настоящий документ содержит методические рекомендации и примеры, которые позволяют подбирать способы работ (режимы, приемы) и материалы для зимнего бетонирования для конкретного объекта строительства, с учетом местных условий и особенностей строительной организации. Выбор способа работ и материалов производится на стадии разработки проекта производства работ (технологических карт), согласовывается с заказчиком и утверждается в установленном порядке.

Настоящий документ необходим не только для разработки упомянутой выше технологической документации, но может быть полезен при лицензировании строительной организации (фирмы) на производство данного вида работ, при сертификации системы управления качеством, при аттестации качества зимнего бетонирования,

В основу документа положены научно-исследовательские работы, выполненные в ЦНИИОМТП и в других институтах строительной отрасли, а также обобщение опыта зимнего бетонирования российских строительных организаций.

При разработке документа использованы нормативные и методические документы, основные из которых приведены в разделе 2.

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Документ распространяется на зимнее бетонирование с применением нагревательных проводов монолитных железобетонных строительных конструкций (плит, стен, перекрытий, колонн и т.п.), имеющих модуль поверхности охлаждения 4-10, при строительстве и ремонте жилых, общественных и производственных зданий и сооружений.

Зимнее бетонирование с применением нагревательных проводов производится при температуре окружающего воздуха, как правило, до минус 20°С.

Документ используется для разработки проектов производства работ (технологических карт), при сертификации монолитных железобетонных конструкций и лицензировании организаций, выполняющих зимнее бетонирование.

Применение документа способствует обеспечению проектной прочности монолитных железобетонных конструкций, возводимых в зимних условиях.

2 НОРМАТИВНЫЕ И МЕТОДИЧЕСКИЕ ДОКУМЕНТЫ

СНиП 3.03.01-87. Несущие и ограждающие конструкции.

СНиП 12-01-2004. Организация строительства.

СНиП 12-03-2001. Безопасность труда в строительстве. Часть 1. Общие требования.

СНиП 12-04-2002. Безопасность труда в строительстве. Часть 2. Строительное производство.

ГОСТ Р 12.4.026-2001. ССБТ. Цвета сигнальные, знаки безопасности и разметка сигнальная. Назначение и правила применения. Общие технические требования и характеристики. Методы испытаний.

ГОСТ 12.4.059-89. ССБТ. Строительство. Ограждения защитные инвентарные. Общие технические условия.

ГОСТ 23407-78. Ограждения инвентарные строительных площадок и участков производства строительно-монтажных работ. Технические условия.

ГОСТ Р 52085-2003. Опалубка. Общие технические условия.

Руководство по производству бетонных работ в зимних условиях, районах Дальнего Востока, Сибири и Крайнего Севера/ЦНИИОМТП Госстроя СССР. - М.: Стройиздат, 1982.

Рекомендации по электрообогреву монолитного бетона и железобетона нагревательными проводами/ЦНИИОМТП Госстроя СССР. - М., 1989.

3 ОБЩИЕ ПОЛОЖЕНИЯ

3.1Нагрев бетона осуществляется теплотой, выделяемой электрическими проводами с высоким омическим сопротивлением при подключении их в сеть. Нагревательные провода могут быть заложены непосредственно в массив монолитной железобетонной конструкции для нагрева ее изнутри.

Нагревательные провода укладывают также перед арматурными и опалубочными работами в песчаный слой или в бетонную подготовку для предотвращения замерзания грунтового основания при бетонировании фундаментов.

3.2 Нагревательные провода закладывают так, чтобы не нанести механических повреждений их изоляции и не вызвать тем самым короткого замыкания токонесущей жилы с арматурой, со стальной опалубкой или с другими металлическими деталями, что может произойти в процессах опалубочных и арматурных работ, а также укладки бетонной смеси.

Контактные соединения проводов выполняют плотными, искрение в контактах не допускается.

3.3 Нагревательные провода подключают к сети после полной проектной заливки в опалубку бетонной смеси. Рекомендуется предусматривать подключение к сети проводов, как правило, в ночное время с целью сокращения расходов, допуская перерывы до 7 ч в их электропитании в дневное время. Длительность перерывов зависит от теплоаккумуляторных свойств бетона, массивности конструкции, толщины утеплителя, температуры воздуха и устанавливается опытным путем с помощью строительной лаборатории.

Питание нагревательных проводов осуществляется от электрической сети 220 В (при условии заземления арматуры) или от автономных источников питания, например, дизель-генераторов.

3.4 Режим термообработки бетона определяется, как правило, при следующих ограничениях.

Разность между температурами воздуха и нагретого бетона принимается до 50-60°С и не более 95°С.

Скорость нагревания бетона для конструкций с модулем поверхности охлаждения 4-6 и 7-10 должна быть не более, соответственно, 6 и 10°С/ч.

Время изотермического выдерживания бетона принимается до нескольких суток.

Скорость остывания для конструкций с модулем поверхности охлаждения 4-6 и 7-10 должна быть не более, соответственно, 3 и 5°С/ч.

Разность температуры наружного слоя бетона с коэффициентом армирования около 3 % и воздуха при распалубке для конструкций с модулем поверхности охлаждения 4 и 5 должна быть не более, соответственно, 30 и 40°С.

3.5 Режимы нагревания, изотермической выдержки и остывания бетона поддерживают автоматически путем использования датчиков температуры, встраиваемых в бетон, и автоматического устройства, подключаемого к силовому оборудованию. Автоматизация процесса позволяет оптимизировать режим термообработки бетона и повысить качество бетонирования, способствует, кроме того, экономии электроэнергии до 25 %.

3.6 Опалубка и арматура должны быть очищены от снега и наледи, например, продувкой из шланга горячим воздухом.

Уложенные (намотанные на арматуру) нагревательные провода также следует предохранять от снега и наледи. Из-за таяния снега и наледи в процессе нагрева бетона увеличивается водосодержание, могут возникнуть каверны, свищи, полости в бетоне, что недопустимо.

3.7 Термообработка бетона для конструкций внутри зданий и подземных фундаментов под оборудование без динамических нагрузок производится до тех пор, пока бетон не наберет прочность:

- без противоморозных добавок - не менее 5 МПа;

- с противоморозными добавками - не менее 20 % проектной прочности.

Термообработка бетона без противоморозных добавок для других конструкций зависит от класса бетона и производится до набора бетоном прочности, приведенной в таблице 1.

Таблица 1

Класс бетона

Прочность бетона, % проектной, в конструкциях

подверженных атмосферному воздействию

переменно замерзающих и оттаивающих в водонасыщенном состоянии

с предварительно напряженной арматурой

В7,5-В10

50

70

80

В12,5-В25

40

В30 и выше

30

3.8 Арматурные и опалубочные работы на следующих выше захватках, а также другие работы на свежеуложенном бетоне разрешается выполнять после набора прочности не менее 1,5 МПа.

Расчетная нагрузка на бетон допускается после набора им проектной прочности.

3.9 Распалубка ненагруженных конструкций может производиться при наборе бетоном следующей минимальной прочности:

- вертикальных (из условия сохранения формы) - 0,3 МПа;

- горизонтальных и наклонных в пролете: до 6 м - 70 % , более 6 м - 80 % проектной прочности.

Время распалубки нагруженных конструкций определяется расчетом и указывается в проекте производства работ.

3.10 Нагревательные провода, оставленные в бетоне, используют в дальнейшем при эксплуатации сооружений, например, для прогрева стенок резервуаров, трубопроводов и тоннелей, полов в животноводческих и промышленных помещениях, проезжей части мостов и участков дорог, тротуаров для предотвращения гололеда.

3.11В состав работ зимнего бетонирования входят:

- организация участка работ с установкой трансформаторной подстанции, инвентарных секций электроразводки, ограждения и т.п.;

- навивка, крепление и подсоединение к трансформаторной подстанции нагревательных проводов;

- укладка ГЭП и теплоизоляционных покрытий на открытые поверхности;

- обеспечение (контроль, обслуживание) работы нагревательного оборудования и заданного режима термообработки бетона.

Затраты электроэнергии на термообработку 1 м3 составляют 70-80 кВт·ч.

Затраты труда на выполнение указанных выше работ составляют 4-7 чел.-ч на 1 м3 бетона. Работы выполняет бригада (арматурщики, бетонщики, электрики) в составе из 4-6 рабочих.

4 ПОДГОТОВКА К ЗИМНЕМУ БЕТОНИРОВАНИЮ

К зимнему бетонированию следует подготовить: зимнюю бетонную смесь, нагревательные провода и силовое оборудование, теплоизоляционные материалы, автобетононасос и бетоновод.

4.1 Зимняя бетонная смесь

4.1.1Для зимней бетонной смеси следует применять портландцементы и нежелательно цементы с большим содержанием минеральных добавок, которые медленно твердеют при пониженных температурах.

Расход цемента в зимней бетонной смеси должен быть повышенным в пределах допуска (не менее 300-400 кг/м3). При этом следует учитывать, что избыток цемента (и вследствие этого экзотермия) и ошибки в режиме термообработки бетона приводят к его перегреву и к браку зимнего бетонирования - образованию трещин.

Избыток воды в зимнем бетоне более вреден, чем в обычном.

Заполнители бетона - щебеночные смеси - должны быть фракционированы и промыты, использование песчано-гравийной смеси не может быть рекомендовано для зимнего бетона.

4.1.2Для придания бетонной смеси необходимых пластических и морозоустойчивых свойств вводят пластифицирующие и противоморозные добавки, которые способствуют также экономии цемента и энергоресурсов. Применяют следующие противоморозные добавки: нитрит натрия (NaNO2), смеси хлористого кальция (СаС1) и хлористого натрия (NaCl), хлористого кальция (CaCl) и нитрита натрия (NaNO2) и другие смеси. Количество вводимых в бетон противоморозных добавок в расчете на безводную смесь в процентах массы воды затворения принимают в зависимости от допустимой температуры остывания и начала обогрева бетона (таблица 2).

Таблица 2

Допускаемая температура остывания бетона, °С

Количество противоморозных добавок, % массы воды затворения

CaCl + NaCl

CaCl + NaNO2

NaNO2

-5

0 + 4

2 + 2

6

-10

0 + 5

3 + 3

10

-15

1 + 5

6 + 6

16

-20

3 + 7

9 + 9

20

Из таблицы 4.1 видно, что введение в бетонную смесь, например, хлористого натрия или нитрита натрия в количестве, соответственно, 5 и 10 % массы воды затворения позволяет допустить при температуре воздуха, например, -15°С остывание бетона до -10°С, после чего начать его нагрев. Введение добавки увеличивает допустимое время транспортирования, укладки и уплотнения бетонной смеси.

4.2 Нагревательные провода и силовое оборудование

4.2.1Для укладки в массив монолитной конструкции с целью прогрева ее изнутри применяют нагревательные провода из стальной проволоки марок ПНСВ, ПОСХП, ПОСХВП, а также трансляционные провода марок ПВЖ, ППЖ и ПРСП.

Наиболее освоены в зимнем бетонировании нагревательные провода марки ПНСВ, диаметром 1,2 и 1,4 мм с теплостойкой электроизоляцией из поливинилхлорида толщиной 0,8 мм.

Для закладки в опалубку или инвентарный нагревательный плоский элемент для прогрева бетона снаружи применяют нагревательные кабели марок КНРПВ, КНРПЭВ и другие с высоким омическим сопротивлением.

Технические характеристики рекомендуемых проводов и кабелей приведены в таблице 4.3.

В качестве токопроводящей жилы обычно используется стальная проволока диаметром 1-3 мм. Для изоляции проводов в обычных условиях применяют полимерные термостойкие пленки толщиной 0,5-1,0 мм, выдерживающие нагрев до 170-180°С. Провода с изоляцией из силиконовых и фторопластовых материалов выдерживают длительный нагрев до температуры 170-220°С.

Таблица 3

Марка

Диаметр жилы, мм

Диаметр провода, мм

Температура провода на воздухе при 20°С, °С

Электрическое сопротивление жилы при 20°С, Ом

ПНСВ

1,2

2,8

80,0

0,14

ПОСХП

1,1

3,4

60,0

0,14

ПВЖ

1,4

3,0

60,0

0,1

ППЖ

1,8

3,4

70,0

0,07

КНРПВ

1,8

5,6

80,0

0,53

КНРПЭВ

1,8

6,4

80,0

0,53

4.2.2Питание нагревательных проводов осуществляется от сети или от автономного источника, например, дизель-генератора. Производится понижение напряжения от 220 В до рабочего значения 24-120 В. Используются различные понижающие трансформаторы: масляные (ТМОА-50, ТМОБ-63), сухие (ТСЗИ-2, 5У2), сварочные. Наиболее широко применяется комплексная трансформаторная подстанция КТПТО-80-86/У1 на базе трансформатора ТМТО-80/0,38-У1, оснащенная блоком автоматического регулирования температуры АРТ-2 для термообработки бетона.

Технические характеристики, рекомендуемые для выбора трансформатора, приведены в таблице 4.

Таблица 4

Напряжение на входе, В

Напряжение на выходе, В

Мощность, кВт

Масса, кг, не более

380

120, 100, 85, 70, 60, 50

50

500

380

120, 100, 85, 70, 60, 50

65

600

380

95, 85, 75, 65, 55, 45

80

700

380/220

180, 140, 100, 70, 50, 35

90

450

4.2.3Для подключения трансформатора к сети используют кабели, например, типа КРПТ 3´25 + 1´16.

Для подключения нагревательных проводов к секциям электроразводки используют провод типа АПР, а секций электроразводки к трансформатору - кабели, например, КРПТ 3´50. При этом применяют инвентарные переносные секции электроразводки.

4.2.4Для поддержания с точностью ±2°С заданного режима изотермической термообработки бетона применяют системы автоматики, например, блок-приставку АРТ-2 к трансформатору ТМОБ-63, которая автоматически отключает (включает) трансформатор по сигналу термодатчика, помещенного в нагреваемый бетон.

4.3 Теплоизоляционные материалы

4.3.1В качестве теплоизоляционных используют разнообразные материалы, наиболее применяемые из которых приведены в таблице 5. Коэффициенты теплопередачи определены при нормальной влажности, с пленочным покрытием. Коэффициенты теплопередачи показывают улучшение теплоизоляционных свойств материалов при уменьшении скорости ветра от 15 м/с. Из таблицы видно, что наиболее эффективным из приведенных теплоизоляционных материалов следует считать плиты из пенопласта (ПХВ). Так, коэффициент теплопередачи плиты из пенопласта толщиной 120 мм при отсутствии ветра составляет К= 0,3 Вт/(м2·°С) и является наименьшим из приведенных в таблице 5.

Таблица 5

Теплоизоляционные материалы

Коэффициент теплопередачи К, Вт/( м2·°С), при скорости ветра, м/с

0

5

15

Пенопласт (ПХВ) толщиной 120 мм

0,3

0,4

0,5

Опилки сосновные толщиной 100 мм

0,7

0,8

0,9

Плиты минераловатные толщиной, мм:

60

0,9

1,1

1,2

50

1,0

1,3

1,4

Шлак толщиной слоя 150 мм

1,3

1,8

1,9

Доски деревянные толщиной, мм:

40

2,0

3,6

4,0

25

2,4

5,2

6,0

4.3.2В качестве утеплителя для открытых бетонных поверхностей кроме приведенных в таблице 5 применяют также керамзит, перлит, совелитовые плиты, торфоплиты, камышит и другие теплоизоляционные материалы.

Для утепления щитов опалубки может быть применена заливная теплоизоляция на основе, например, пенополиуретана и фенопласта.

Эти же теплоизоляционные материалы используют для укрытия металлического каркаса опалубки и ребер, которые являются, как известно, «мостиками холода».

4.4 Автобетононасос и бетоновод

4.4.1Подготовка рабочих органов автобетононасоса (бункера, других узлов) и бетоновода заключается, прежде всего, в утеплении их теплоизоляционными материалами. Утепление должно быть таким, чтобы потери теплоты бетонной смеси при загрузке ее в бункер, транспортировании и укладке в опалубку были минимальными и обеспечивали заданную проектом температуру смеси при укладке.

Бункер автобетононасоса регулярно очищают и защищают от снега и ветра.

В ряде случаев (например, при температуре наружного воздуха до минус 5°С, при бетонировании второстепенных конструкций) автобетононасос может использоваться без зимней подготовки, то есть в летнем исполнении.

4.4.2 Подготовка к зиме других органов, узлов и агрегатов автобетононасоса выполняется во время сезонного технического обслуживания, в состав которого входят регламентные операции по замене масел и рабочих жидкостей, регулировочные и другие операции по обеспечению бесперебойной работы автобетононасоса зимой.

4.4.3 Перед началом работы автобетононасоса (транспортирования и укладки бетонной смеси) бетоновод прогревают теплым воздухом, паром или горячей водой.

Очистку бункера автобетононасоса и бетоновода после работы производят теплой водой. Воду, оставшуюся после очистки, полностью удаляют.

4.4.4В начальный момент работы автобетононасоса температура пускового раствора и бетонной смеси, заполнившей бетоновод, должна быть не ниже 30°С.

Температура бетонной смеси в процессе укладки должна соответствовать температуре, заданной проектом.

При утепленном бетоноводе допускается непреднамеренная остановка автобетононасоса до 30 минут. При более длительной остановке необходимо удалить бетонную смесь из бетоновода.

5 ТЕХНОЛОГИЯ ТЕРМООБРАБОТКИ БЕТОНА


Возврат к списку

(Нет голосов)

Комментарии (0)


Чтобы оставить комментарий вам необходимо авторизоваться
Самые популярные документы
Новости
Все новости